John A. Kennedy & Associates

Fire and Explosion Investigation Experts

Full-Scale Room Burn Patterns Study.

G. Gorbett, W. Hicks, P. Kennedy & R. Hopkins, 2008

Fire Patterns, Full-scale Testing, Fire Science, Fire Dynamics, Heat and Flame Vectors

Key questions to be addressed by the research
burns were: (a) patterns persistence through flashover and full room involvement, (b) reproducibility of patterns geometry in minimal variable testing methods, and (c) reaffirmation of standard patterns analysis methodologies, such as heat and flame vector analysis, depth of calcination measurement, and truncated cone patterns formation and analysis. These tests demonstrate a remarkable resemblance of patterns in minimal variable testing methods. Patterns persistence through flashover and full room involvement was observed, as well as the reproducibility of specific fire patterns, heat and flame vector analysis results, and depth of calcination measurements. In addition, several ancillary fire effects, fire patterns, and post-fire analysis issues were successfully examined.

ABSTRACT

Full-scale research burns into the nature of patterns in compartment fires were conducted at the new fire research facility of Eastern Kentucky University. Key questions to be addressed by the research burns were: (a) patterns persistence through flashover and full room involvement, (b) reproducibility of patterns geometry in minimal variable testing methods, and (c) reaffirmation of standard patterns analysis methodologies, such as heat and flame vector analysis, depth of calcination measurement, and truncated cone patterns formation and analysis. As an added value these research burns were designed to test the validity of content of the National Fire Code© component document, NFPA 921 – Guide for Fire and Explosion Investigations chapters on Fire Patterns, and Origin Determination.

These tests demonstrate a remarkable resemblance of patterns in minimal variable testing methods. Patterns persistence through flashover and full room involvement was observed, as well as the reproducibility of specific fire patterns, heat and flame vector analysis results, and depth of calcination measurements. In addition, several ancillary fire effects, fire patterns, and post-fire analysis issues were successfully examined.

Read Full Text (PDF)

Scroll to top